Use of Undoped and Carbon-Doped Calcium Molybdate for degradation of basic Fuchsin: A Green Chemical Route

Chawda H.S.^{1*}, Bhatt J.¹, Rathore R.², Ameta S.C.¹ and Ameta R.³ 1. Department of Chemistry, PAHER University, Udaipur-313024 (Raj.), INDIA 2. Department of Chemistry, B. N. University, UDAIPUR-313024 (Raj.), INDIA 3. Department of Chemistry, J. R. N. Rajasthan Vidhyapeeth (Deemed to be University), UDAIPUR-313002 (Rajasthan), INDIA *hardeepshre@gmail.com

Abstract

Calcium molybdate (undoped and carbon-doped) has been used as photocatalyst for the degradation of basic fuchsin. Calcium molybdate is a ternary photocatalyst. The reaction was monitored spectrophotometrically.

The effect of various operating parameters on rate of degradation was observed such as pH, concentration of dye, amount of semiconductor and light intensity. Optimum conditions were: pH = 9.0, concentration of basic fuchsin = 4.00×10^{-4} M, amount of CaMoO₄ = 0.08 g and light intensity = 50.0 mWcm^{-2} . A tentative mechanism for the photocatalytic degradation of basic fuchsin has been proposed which involves hydroxyl radicals as the oxidant. 2% C-doped was found to show better photocatalytic performance than undoped, 1 and 3% C-doped samples.

Keywords: CaMoO₄, Photocatalytic activity, Basic fuchsin, Degradation, Hydroxyl radical, Oxidation.

Introduction

Basic fuchsin is a fluorescent dye which contains a mixture of rosaniline, pararosaniline, magenta II and new fuchsine. It is used for the detection of acid-fast bacilli and is quite common in the Ziehl Neelsen staining technique. It also stains mucopolysaccharides and glycoproteins and also tracks proteins in acidic pH systems. Alkaline fuchsin solution is used in propylene glycol in the diagnosis of dental caries. Its side effects are irritation in eyes.

Ning et al¹ prepared Fe_3O_4/SiO_2 core-shell nanoparticles via co-precipitation and sol-gel methods. Then this catalyst was used for degradation of basic fuchsin in wastewater by H_2O_2 . It was found that coating of SiO_2 on Fe_3O_4 nanoparticles could stabilize the Fe_3O_4 in aqueous solution dramatically. It was reported that almost complete degradation could be achieved within 5 min. These Fe_3O_4/SiO_2 core-shell nanoparticles were stable and also exhibited excellent recyclability even after repeated use.

Wang et al² synthesized 3D hierarchically porous perovskites LaFe_{0.5}M_{0.5}O₃-CA (M = Mn, Cu) in a two-step method. They used polymethylmethacrylate (PMMA) as template and supporting with carbon aerogel. As-prepared composites were used in microwave catalytic degradation of fuchsin basic in wastewater. It was reported that the catalytic degradation of dye could be remarkably improved by coating with CA. The dye removal fitted well with pseudo-first order model and the degradation rate constants were found to increase with initial pH value while it decreases with initial basic fuchsin concentration. All the catalysts presented can be recycled and are stable in repeated use. Radical scavenger studies indicated that hydroxyl radicals played important role in the catalytic degradation.

Taamallah et al³ investigated effects of several operating parameters on the efficiency of ultrasonic process such as initial concentration of dye, ultrasonic power and temperature. Experiments were also conducted in the presence of tert-butyl alcohol (radical scavenger). It was reported that initial degradation rate was increased by a factor of 2.8 when the power was increased from 30 to 90 W. The presence of salts has practically no significant effect on the efficiency of removal of dye. It was confirmed that hydroxyl radical was the main active species involved in the degradation of this compound. Huang et al⁴ prepared a visible light active photocatalyst of S-doped graphene quantum dots (S-GQDs) via a facile hydrothermal synthesis. They used 1, 3, 6-trinitropyrene and Na₂S as precursors. An excellent photocatalytic performance of S-GQDs was observed for degradation of basic fuchsin under visible light irradiation.

Lan et al⁵ studied removal of basic fuchsin from aqueous solutions using ultrasound. The effects of different operating parameters such as ultrasound power (200 W–500 W), initial pH (3–6.5) and temperature (15 - 60°C) were evaluated on the ultrasonic degradation. The degradation of basic fuchsin was found to obey pseudo-first order reaction kinetics. It was reported that 84.1% extent of degradation could be achieved at initial dye concentration 10 μ mol L⁻¹, ultrasound power 400 W, ultrasound frequency 25 kHz, dosage of Fe(II) 4 mg L⁻¹, initial pH 6.5 and temperature 22°C. The rate of degradation of fuchsin basic was significant on addition of radical scavenger.

The g-C₃N₄/Ag₃VO₄ hybrid photocatalysts were prepared by Wang et al⁶ via by anchoring Ag₃VO₄ on the surface of g-C₃N₄. It was reported as Ag₃VO₄ nanoparticles were well distributed on the surface of g-C₃N₄ and g-C₃N₄/Ag₃VO₄ heterojunctions were formed. As-prepared g-C₃N₄/Ag₃VO₄ hybrid materials exhibited much higher photocatalytic activity for basic fuchsin as compared to gC₃N₄ and Ag₃VO₄ optimal rate constant was found to be 0.92 h⁻¹ which was almost 11.5 and 6.6 times higher as compared to pure g-C₃N₄ and Ag₃VO₄ respectively. It was found that h⁺ and O₂⁻⁻ were generated in the photocatalytic process and these played a key role in degradation of basic fuchsin.

high-performance photocatalyst of AgBr-А Ag₃PO₄/MWCNTs was fabricated by Wang et al⁷ chemical precipitation method. They used hexadecyltrimethyl ammonium bromide (NH₄)₂HPO₄ and AgNO₃ in the presence of MWCNTs. The photocatalytic activity of the photocatalyst was evaluated by decomposing mixed dve of basic fuchsin and basic red 9. It was reported that about 99% decolorization and 47% mineralization could be achieved irradiation under visible light in 10 min. H₄SiW₆Mo₆O₄₀/SiO₂ was sensitized by H₂O₂ solution by Yu et al⁸ and catalytic activity improved significantly. Degradation of basic fuchsin was taken as a model pollutant to evaluate influencing factors on the photodegradation reaction.

The optimal conditions achieved were: Initial concentration of basic fuchsin 8 mg L^{-1} , pH 2.5, catalyst dosage 4 g L^{-1} and light irradiation time 4 h. The degradation rate of basic fuchsin was 98% under optimum conditions. The catalyst maintained its photocatalytic activity for degradation of dye even after four cycles.

Kurt et al⁹ prepared graphene nanosheets and then these were successfully decorated with platinum (Pt) and palladium (Pd) nanoparticles. It was revealed that the graphene-metal nanocomposites exhibited higher free radical scavenging activity. It was also reported that the graphene-metal nanocomposites could be successfully used for the photocatalytic removal of fuchsin and indigo carmine in presence of light. The photocatalytic degradation of two cationic triarylmethane dyes (crystal violet and basic fuchsin) was examined by Li et al¹⁰ in aqueous TiO₂ suspensions under visible light irradiation.

Material and Methods

Chemicals used: Basic fuchsin (Himedia), ammonium molybdate (Thermo Fischer), calcium chloride (Merck) and glucose (Thermo Fischer) were used in present investigations. Double distilled water was used to make solutions throughout the experiment.

Preparation of photocatalysts: Pure and 1, 2 and 3% carbon-doped calcium molybdate were prepared via hydrothermal methodas reported earlier.¹¹

Photocatalytic degradation: Some control experiments were also carried out. 2.5 mL of dye solution (1.10×10^{-3}) was taken in volumetric flask of 100 mL capacity. The solution was diluted with distilled water so that the concentration of dye solution became 1.0 x 10^{-4} M. The solution was divided into four equal parts:

- In the first beaker, only dye solution was taken and kept in the dark.
- In the second beaker, only dye solution was taken and exposed to the light.
- In the third beaker, 0.10 g undoped calcium molybdate or C-doped (1, 2 or 3%) calcium molybdate (photocatalyst) was added to the dye solution and kept in dark.
- In the fourth beaker, 0.10 g undoped calcium molybdate or C-doped (1, 2 or 3%) calcium molybdate (photocatalyst) was added to the dye solution and exposed to the light.

After 3-4 hours, the absorbance of the solution in each beaker was measured with the help of a spectrophotometer. It was observed the solutions of the first three beakers (in each case) had the same absorbance as its initial absorbance while absorbance of reaction mixture in fourth beaker (for each case) had significant decrease in absorbance as compared to its initial value. This indicates that undoped calcium molybdate or C-doped (1, 2 and 3%) calcium molybdate and light both are necessary for degrading basic fuchsin. Hence, this was concluded that the reaction is photocatalytic in nature and not chemical and photochemical.

Results and Discussion

Characterization

Field Emission Scanning Electron Microscopy (**FESEM**): The morphology of the particles was examined using Field Emission Scanning Electron Microscope (Nova NanoSEM, model) operated at a voltage of 15 kV. The microstructural characterization of undoped CaMoO₄ and Cdoped 3% CaMoO₄ was carried out via field emission scanning electron microscopy. The FESEM images of the undoped CaMoO₄ and C-doped (3%) CaMoO₄ (glucose was used as C source) are presented in fig. 1.

Energy Dispersive X-Ray Analysis (EDX): EDX analysis was performed to study the chemical composition of the samples. EDX spectra of undoped CaMoO₄ and C-doped (3%) CaMoO₄ are presented in figs. 2 and 3 respectively. An estimation of carbon content in C-doped CaMoO₄ was also obtained from EDX measurements. It is clear from these figures that undoped CaMoO₄ contains only Ca, Mo and O and no other impurity was present there. Hence, it is pure CaMoO₄. EDX of C-doped (3%) CaMoO₄ showed a peak of carbon confirming the doping of carbon.

X-Ray Diffraction Analysis (XRD): XRD of as-prepared CaMoO₄ composite was recorded by the X-ray diffractometer (XRD) (P analytical X Pert Pro) using CuK α radiation ($\lambda = 1.54060$ nm) in the 2 θ scanning ranges from 20° to 80° with a scan rate at 10° min⁻¹. The applied voltage and current were 40 KV and 40 mA respectively. The powder XRD pattern of As-prepared CaMoO₄ composite and C-doped CaMoO₄ (3%) are given in figs. 4 and 5 respectively.

Fig. 1: FE-SEM Images of (a) Undoped CaMoO₄ (b) 3% C-doped CaMoO₄

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Plus Det

Fig. 2: EDX of Undoped CaMoO₄

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Plus Det

Fig. 3: EDX of 3% C-doped CaMoO₄

Fig. 5: XRD of 3% C-doped CaMoO₄

Experimental: 0.0338 g of basic fuchsin was dissolved in 100.0 mL of doubly distilled water so that the concentration of stock solution of dye was 1.0×10^{-3} M. This solution was further diluted as and when required. 50 mL dye solution of 4.00×10^{-4} M concentration was taken in a beaker. The pH of this solution was adjusted to 9.0 and 0.08 g of catalyst. Undoped, 1, 2 or 3% C-doped CaMoO₄ were added in it separately. Now, this reaction mixture was exposed to a 200 W tungsten lamp. A water filter was used to cut off thermal radiations. An aliquot of 3 mL was taken out from the reaction mixture at regular time intervals and its absorbance (A) was observed at 545 nm.

It was found that the absorbance decreases with increasing time of exposure. A plot of $1 + \log A$ versus time was found to be linear which shows that the reaction follows pseudo-

first order kinetics. The rate constant was calculated by the rate expression.

$$k = 2.303 \text{ x slope} \tag{1}$$

The same procedure was followed using catalyst C-doped CaMoO₄. The results of typical runs for photocatalytic degradation of basic fuchsin using undoped, 1, 2 and 3% C-doped CaMoO₄ are represented in table 1 and graphically presented in fig. 6.

Effect of pH: The effect of pH on the rate of degradation was observed in pH range 7.5–10.5 for undoped 1, 2 and 3% C-doped CaMoO₄, keeping all other parameters identical. The results are summarized in table 2. It was observed that rate of reaction also increases on increasing pH. After

reaching a maximum value at pH 9.0, rate decreases with a further increase in pH. In this case, the presence of scavenger (2-propanol) affected the rate of reaction adversely and hence, it may be concluded that •OH radicals are participating in the degradation as active oxidizing species.

Effect of dye concentration: The effect of variation of concentration of basic fuchsin rate has been observed in the range from 3.2×10^{-4} to 4.6×10^{-4} M for undoped 1, 2 and 3% C-doped CaMoO₄ keeping all other parameters same. The results are reported in table 3. It has been observed that the rate of degradation increases with increasing concentration of dye up to 4.00×10^{-4} M for undoped, 1, 2 and 3% C-doped CaMoO₄.

Further increase in concentration beyond this limit resulted in a decrease in degradation rate. This may be explained on the basis that on increasing the concentration of dye, the rate of reaction increases as more molecules of dyes were available for excitation and energy transfer but on increasing concentration of dye further, the rate of reaction decreases.

This may be explained on the basis that after reaching an optimum concentration, the dye may start acting as an internal filter itself and it will not permit the desired light intensity to reach the surface of the photocatalyst and as a result, the rate of photocatalytic degradation decreases.

Table	e 1
Typical	runs

[Basic	fuchsin] = 4.00	$0 \times 10^{-4} \mathrm{M}$				Amount of	photocatalyst =	= 0.08 g
рн = 9	.0		r			Light inten	sity = 50.0 mW	cm ²
T:	CaMo	004	1% C-Dope	ed CaMoO4	2% C-Dope	d CaMoO4	3% C-Dope	d CaMoO4
(min)	Absorbance (A)	1+log A	Absorbance (A)	1+log A	Absorbance (A)	1+log A	Absorbance (A)	1+log A
0	0.537	0.7300	0.413	0.6160	0.501	0.6998	0.450	0.6532
5	0.501	0.6998	0.355	0.5502	0.380	0.5798	0.417	0.6201
10	0.473	0.6749	0.302	0.4800	0.288	0.4594	0.390	0.5911
15	0.450	0.6532	0.257	0.4099	0.240	0.3802	0.371	0.5694
20	0.426	0.6294	0.209	0.3201	0.177	0.2480	0.345	0.5378
25	0.417	0.6201	0.178	0.2504	0.141	0.1492	0.316	0.4997
30	0.398	0.5999	0.155	0.1903	0.107	0.0294	0.298	0.4742

Rate constant (k) for:

Undoped CaMoO₄ = $1.71 \times 10^{-4} \text{ sec}^{-1}$ 1% C-Doped CaMoO₄ = $5.46 \times 10^{-4} \text{ sec}^{-1}$

2% C-Doped CaMoO₄ = $8.53 \times 10^{-4} \text{ sec}^{-1}$

3% C-Doped CaMoO₄ = $2.37 \times 10^{-4} \text{sec}^{-1}$

Fig. 6: Typical runs

Table 2 Effect of pH

$[Basic fuchsin] = 4.00 \times 10^{-4} M$ Amount of photocatalyst = 0.08 g

pH = 9.0

pH = 9.0

Light intensity = 50.0 mWcm^{-2}

рН	CaMoO ₄	1% C-doped CaMoO4	2% C-doped CaMoO4	3% C-doped CaMoO4
	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	Rate constant (k) \times 10 ⁴ (sec ⁻¹)
7.5	0.47	2.98	6.01	0.76
8.0	0.84	3.81	6.94	1.03
8.5	1.33	4.99	7.87	1.88
9.0	1.71	5.46	8.53	2.37
9.5	1.14	4.98	7.66	1.88
10	0.82	3.45	6.02	1.02
10.5	0.47	2.88	5.11	0.66

Table 3

Effect of dye concentration

Light intensity = 50.0 mW cm^{-2}

Amount of photocatalyst = 0.08 g					
[Basic Fuchsin] × 10 ⁴	CaMoO ₄	1% C-doped CaMoO4	2% C-doped CaMoO ₄	3% C-doped CaMoO ₄	
Μ	$\begin{array}{l} Rate \ constant \\ (k) \times 10^4 \ (sec^{-1}) \end{array}$	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	
3.2	0.65	2.90	5.22	0.88	
3.4	0.81	3.38	6.03	1.07	
3.6	1.03	4.27	7.12	1.65	
3.8	1.40	5.11	8.04	2.01	
4.0	1.71	5.46	8.53	2.37	
4.2	1.34	5.07	8.10	2.06	
4.4	1.02	4.39	7.31	1.45	
4.6	0.78	3.96	6.44	0.98	

Table 4Effect of amount of photocatalyst

Light intensity = 50.0 mW cm^{-2}

[Basic fuchsi	$n_{\rm J} = 4.00 \times 10^{-7} {\rm M}$			
	CaMoO ₄	1% C-doped CaMoO ₄	2% C-doped CaMoO ₄	3% C-doped CaMoO ₄
Photocatalyst (g)	Rate constant	Rate constant	Rate constant	Rate constant
	$(k) \times 10^4 (sec^{-1})$	$(k) \times 10^4 (sec^{-1})$	$(k) \times 10^4 (sec^{-1})$	$(k) \times 10^4 (sec^{-1})$
0.04	0.99	3.16	6.04	1.04
0.06	1.06	4.80	7.44	1.89
0.08	1.71	5.46	8.53	2.37
0.10	1.70	5.45	8.54	2.37
0.11	1.71	5.46	8.53	2.36
0.12	1.72	5.47	8.52	2.37
0.13	1.71	5.46	8.53	2.38
0.14	1.71	5.46	8.53	2.37

Effect of amount of photocatalyst: The effect of variation of the amount of photocatalyst on the rate of dye degradation has been observed in the range from 0.04 to 0.14 g and the results are summarized in table 4. It was observed that the rate of degradation increases on increasing the amount of photocatalyst, but up to a certain amount of photocatalyst (0.08 g) for undoped and 1, 2 and 3% C-doped CaMoO4. But

after this point, the rate of reaction becomes virtually constant and it shows saturation behavior. This may be explained on the basis that as the amount of photocatalyst was increased, the exposed surface area of photocatalyst will also increase. As a result, the rise in the rate of reaction has been observed, but with further increasing the amount of photocatalyst, only the thickness of the layer will increase (and not the exposed surface area) and hence, a saturation like behavior was observed.

Effect of light intensity: The effect of light intensity on the rate of degradation of dye was also investigated by changing the intensity of light from 30.0 to 80.0 mWcm⁻². The observations are presented in table 5. The data indicated that the rate of reaction increases with increasing light intensity and maximum rate was found at 50.0 mW cm⁻² for undoped, 1, 2 and 3% C- doped CaMoO₄. It may be due to the fact that as the light intensity was increased, the number of photons striking per unit time per unit area of photocatalyst will also increase resulting in higher rate of degradation. Further increase in the light intensity may initiate some side thermal reactions and therefore, higher intensities of light have been avoided.

On the basis of experimental observations, a tentative mechanism has been proposed for photocatalytic degradation of basic fuchsin.

, hν.	
$^{1}\mathrm{BF}_{0}\longrightarrow ^{1}\mathrm{BF}_{1}$	(2)

 ${}^{1}BF_{1} \xrightarrow{ISC} {}^{3}BF_{1}$ (3)

[Basic fuchsin] = 4.00×10^{-4} M

$$SC \xrightarrow{h\nu} e^{-}(CB) + h^{+}(VB)$$
 (4)

 $h^{+} + OH^{-} \rightarrow OH$ (5)

$$OH + {}^{3}BF_{1} \rightarrow Leuco - BF$$
(6)

Leuco-BF \rightarrow Products (7)

where BF = Basic duchsin and SC = Undoped, 1, 2 and 3% carbon-doped CaMoO₄.

First of all, basic fuchsin is excited to its first excited singlet by absorbing radiations of suitable wavelength state. It relaxes in its triplet excited state through intersystem crossing. Calcium molybdate also absorbs light to excite electron from its valence band to conduction band; thus, leaving a hole in valence band. As this hole is electron deficient and medium is also alkaline (more OH⁻ ions are there), it will abstract an electron from ⁻OH ions to generate 'OH radicals. These radicals are very strong oxidant and nonselective also and therefore, they will attack triplet state of basic fuchsin converting it into its leuco (colorless) form. Leuco form of basic fuchsin is less stable and it will degrade to some small almost harmless compounds like carbon dioxide, water, NO₃⁻ or NO₂⁻and Cl⁻ ion.

Table 5 Effect of light intensity

```
Amount of photocatalyst = 0.08 g
```

Light Intensity	CaMoO ₄	1% C-Doped CaMoO4	2% C-Doped CaMoO4	3% C-Doped CaMoO4
$(\mathrm{mW}\ \mathrm{cm}^{-2})$	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	Rate constant (k) \times 10 ⁴ (sec ⁻¹)	Rate constant (k) \times 10 ⁴ (sec ⁻¹)
30.0	0.46	3.17	6.45	1.05
40.0	1.08	4.23	7.85	1.86
50.0	1.71	5.46	8.53	2.37
60.0	1.43	5.07	8.12	2.04
70.0	1.06	4.11	7.23	1.47
80.0	0.87	3.09	6.11	1.09

Conclusion

pH = 9.0

MECHANISM

Undoped as well as 1, 2 and 3% carbon-doped CaMoO₄ could successfully degrade basic fuchsin photocatalytically. It was found that photocatalytic activity of CaMoO₄ increases on carbon doping but the maximum rate of degradation was observed with 2% C-doped CaMoO₄. There was adverse effect on rate of degradation on increasing the amount of carbon dopant above this value (3%). The optimum conditions for degradation of basic fuchsin are: pH = 9.0, concentration of basic fuchsin = 4.00 x 10^{-4} M, photocatalyst = 0.08 g and light intensity = 50.0 mW cm⁻².

References

1. Ning J. et al, SiO_2 stabilized magnetic nanoparticles as a highly effective catalyst for the degradation of basic fuchsin in industrial dye wastewaters, *Molecules*, **23**(10), doi/10.3390/molecules 23102573 (2018)

2. Wang Y. et al, Synthesis of hierarchically porous perovskitecarbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism, *App. Surf. Sci.*, **439**, 475 (**2018**)

3. Taamallah A., Merouani S. and Hamdaoui O., Sonochemical degradation of basic fuchsin in water, *Desalin. Water Treat.*, **57(56)**, 27314 (**2016**)

4. Huang B., He J., Bian S., Zhou C., Li Z. and Xi F., S-doped graphene quantum dots as nanophotocatalyst for visible light degradation, *Chinese Chem. Lett.*, **29**(**11**), 1698 (**2018**)

5. Lan R.J., Li J.T. and Chen B.H., Ultrasonic degradation of fuchsin basic in aqueous solution: Effects of operating parameters and additives, *Int. J. Photoenergy*, **2013**, doi; 10.1155/2013/893131 (**2013**)

6. Wang S., Li D., Sun C., Yang S., Guan Y. and He H., Synthesis and characterization of $g-C_3N_4/Ag_3VO_4$ composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, *App. Catalysis B: Environ.*, **144**, 855 (**2014**)

7. Wang S., Li D., Sun C., Yang S., Guan Y. and He H., Highly efficient photocatalytic treatment of dye wastewater via visiblelight-driven AgBr–Ag₃PO₄/MWCNTs, *J. Mol. Catal. A: Chem.*, **383-384**, 128 (**2014**)

8. Yu L., Huang Y., Yang Y., Xu Y., Wang G. and Yang S., Photocatalytic degradation of organic dyes by $H_4SiW_6Mo_6O_{40}/SiO_2$ sensitized by H_2O_2 , *Int. J. Photoenergy*, **2013**, doi:10.1155/2013/812376 (**2013**)

9. Kurt B.Z., Durmus Z. and Durmus A., Preparation and characterization of platinum (Pt) and palladium (Pd) nanoparticle

decorated graphene sheets and their utilization for the elimination of basic fuchsin and indigo carmine dyes, *Solid State Sci.*, **51**, 51 (2016)

10. Li X., Liu G. and Zhao J., Two competitive primary processes in the photodegradation of cationic triarylmethane dyes under visible irradiation in TiO_2 dispersions, *New J. Chem.*, **23**, 1193 (**1999**)

11. Chawda H.S., Bhatt J., Rathore R., Ameta S.C. and Ameta R., Photocatalytic degradation of malachite green using undoped and carbon-doped calcium molybdate catalysts, *Rasayan J. Chem.*, (Communicated) (**2020**).

(Received 15th September 2020, accepted 18th October 2020)